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By use of conformal field theory, we discover several exact factorizations of higher-order density correlation
functions in critical two-dimensional percolation. Our formulas are valid in the upper half-plane, or any
conformally equivalent region. We find excellent agreement of our results with high-precision computer simu-
lations. There are indications that our formulas hold more generally.

DOI: 10.1103/PhysRevE.76.041106 PACS number�s�: 64.60.Ak, 61.20.Gy, 68.35.Rh, 68.18.Jk

I. INTRODUCTION

Correlation functions play an important role in the theory
of fluids at thermal equilibrium, appearing in expressions for
many experimental as well as theoretical quantities. Higher-
order correlations, i.e. correlations of quantities such as the
density ��x� at several points, e.g. ���x1���x2���x3� . . . �,
where the brackets denote a thermal average, occur in many
contexts. Calculating such quantities is therefore a central
goal of the theory of fluids. This is, however, an especially
challenging problem, and many approaches have been pro-
posed �for a review, see �1��. One idea is to factorize the
higher-order correlations in terms of lower-order correlations
�with fewer points�. In this article, we consider percolation in
two dimensions at the percolation point in the upper half-
plane �or any simply connected region�. In this case, by use
of conformal field theory, we are able to exhibit several exact
formulas in which three-point correlations factorize in terms
of two-point correlations or correlations involving one point
and an interval. There are no similar exact results in the
theory of fluids, to our knowledge.

Percolation in two-dimensional systems has a long his-
tory, and has been examined by a very wide variety of meth-
ods, especially at the percolation point �see �2� for some
representative references�. In this paper we report the results
of calculations of correlation functions of the density in the
upper half-plane. Our formulas follow from conformal field
theory �3,4�, which is applicable to critical two-dimensional
�2D� percolation in the continuum limit.

We focus on the density, defined as the number of samples
for which a site belongs to clusters satisfying some specified
boundary condition �such as clusters touching certain parts
of the boundary� divided by the total number of samples N,
in the limit N→�. The density is an interesting and also
practically important universal feature of percolation at the
critical point. Note that the density at a point z of clusters

which touch specified parts of the boundary is proportional
to the probability of finding a cluster that connects those
parts of the boundary with a small region around the point z.
Thus density correlation functions may also be viewed as
probabilities of configurations with certain specified connec-
tions.

In conformal field theory, operators in the bulk �except the
unit operator� are defined so that their expectation valued
vanishes, e.g. ���z��=0. Hence the density at z calculated
below is subtracted. In particular, it will vanish when z is
sufficiently far from the other points or intervals with which
it connects.

In a recent paper �2�, we considered the problem of clus-
ters simultaneously touching one or two intervals on the
boundary of a system, and also considered cases where those
intervals shrink to points �anchor points�. In �2� we exhibited
factorization in one particular case, demonstrated a relation
to two-dimensional electrostatics, and highlighted the univer-
sality of percolation densities. �In particular, we pointed out
that by conformal covariance, the factorization is valid in
any simply connected domain.� In this paper, we find more
factorizations, and also give explicit expressions for the co-
efficients in the factorization formulas.

In addition, we confirm our theoretical results via numeri-
cal simulations to a high degree of accuracy. One case con-
firms numerical results in �2� using a different realization of
percolation; simulations of our new predictions are also in-
cluded.

In Sec. II, we first give the derivation of the factorization
results, and then compare them with computer simulations.
Section III includes a few concluding remarks and discus-
sion.

II. PREDICTIONS AND SIMULATIONS

This section begins by presenting the derivation of our
formulas, then compares them with computer simulations.

First we recapitulate the derivation of the factorization
presented in �2�. Employing conformal field theory, applied
to percolation, one may identify three operators of interest.
The boundary operator �1,2�x�, with conformal dimension
h1,2=0, changes the boundary conditions from fixed to free
at a point x on the boundary �here, the real axis�. This op-
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erator appears in the field theory limit of a percolation sys-
tem at a point between a boundary segment where all the
sites are occupied �or all empty� and one where the sites are
unconstrained. Similarly, the boundary operator ��x�
ª�1,3�x�, with conformal dimension h�=1/3, anchors a
cluster at a point x on a free boundary segment; this operator
appears along a free boundary at a point where a cluster
touches the boundary. Finally, the “magnetization” operator
��z�ª�3/2,3/2�z�, with conformal dimension h�=5/96, mea-
sures the density of clusters at a point z in the upper-half
plane. It is the field theory limit of the corresponding lattice
quantity. Correlations involving these operators are propor-
tional to the probability of finding a cluster connecting the
various points, or intervals between boundary points, that
they define.

The notation in the following formulas omits, for brevity
and clarity, various constants of proportionality. Some of
these are universal �independent of the particular realization
of percolation�, while others are not. The latter type includes
two kinds: constants multiplying the conformal operators,
which are associated with the particular realization of the
operator for the system of interest, and constants specifying
the dimension of the small regions with which the clusters
are conditioned to connect. Our final results are homoge-
neous in operators and dimensional constants, so ignoring
these constants makes no difference. The remaining �univer-
sal� constants are evaluated directly by taking an appropriate
limit.

Consider the probability P�x1 ,x2� of a cluster in the upper
half-plane �as are all the clusters considered herein� that con-
nects the points x1 and x2 on the real axis. This �for x1�x2�
is

P�x1,x2� � ���x1���x2�� � � 1

x2 − x1
�2/3

. �1�

This result follows from Cardy’s formula for the crossing
probability �5� in the appropriate limit.

The probability P�z� of a cluster connecting any point on
the boundary with a point z=x+ iy in the upper half-plane is
simply

P�z� � ���z���z̄�� � �1

y
�5/48

, �2�

consistent with the considerations in �6�. Here, the point z̄
appears because half-plane correlation functions are given by
full-plane correlators �which the expectation value denotes�
with “image” operators �4�.

The probability P�x1 ,z� of a cluster constrained to touch
the �boundary� point x1 and a point z=x+ iy in the upper-half
plane is similarly given by a three-point correlation function,

P�x1,z� � ���x1���z���z̄�� � y11/48 1

	z − x1	2/3 . �3�

We now consider two more complicated objects. The first
is the probability P�x1 ,x2 ,z� of a cluster touching two
boundary points x1 and x2 as well as a point z in the upper-
half plane. This is given by a four-point correlation function,

P�x1,x2,z� � ���x1���x2���z���z̄�� = �x2 − x1�−2/3y−5/48F��� ,

�4�

where the cross ratio

� =
�z − x2��z̄ − x1�
�z̄ − x2��z − x1�

, �5�

�this form is slightly different from, but equivalent to, the
expression in �2��. It is convenient, in what follows, to ex-
press the cross ratio in terms of the angle � �see Fig. 1�

� = e−2i�	1+	2� = e2i�. �6�

Since � is a level-three operator, F��� satisfies a third-
order differential equation. The appropriate solution may be
identified via physical arguments in the limit x1→x2 �2�. In
terms of �, it is

F��� = sin1/3��� . �7�

Next, combining �1� and �3�–�7� one finds by simple algebra
that

P�x1,x2,z� = C1
P�x1,x2�P�x1,z�P�x2,z� . �8�

Here, the constant C1 may be evaluated by taking x1→x2, so
that the lhs of �8� becomes a three-point function, with C1
=C222 a �boundary� operator product expansion coefficient
�2�. This is evaluated in �7�, giving

C1 =
27/2
5/2

33/4��1/3�9/2 . �9�

One finds C1=1.0299268. . .. In �2� we report simulation re-
sults verifying �8�. For bond percolation on the square lattice
we find C1=1.030±0.001, in excellent agreement with �9�.
Simulation also shows that �8� applies, with the same value
of C1, when one or both of the points x1 ,x2 is moved off the
boundary �2�. However, in this case the factorization only
holds asymptotically, when the points are far apart compared
to the distance to the edge.

We emphasize that �8�, along with �14�, �16�, and �18�
below, are both exact and universal. Furthermore, they �by a
conformal mapping� also hold in any simply connected re-
gion, with the same proportionality constants. In a different
geometry, the functions in �8�, �14�, �16�, or �18� will change,
but the relation remains, with the same proportionality con-
stant.

Note that �8� resembles the Kirkwood superposition ap-
proximation �8�, with the difference that here there is a
square root and a coefficient on the rhs. Further, the Kirk-
wood formula is apparently only exact asymptotically, by

FIG. 1. �Color online� The geometry used to define �.
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contrast to �8�, which is both exact and universal.
Now we examine the probability P��x1 ,x2� ,z�

(P��x1 ,x2� ,z�) of a cluster touching the boundary on �out-
side� the interval �x1 ,x2� as well as a point z in the upper-half
plane. Both these quantities are given by the correlator

��1,2�x1��1,2�x2���z���z̄�� = y−5/48G��� . �10�

Since �1,2 is a level-two operator, G satisfies a second-order
differential equation. The solution corresponding to
P��x1 ,x2� ,z� �2� may be written as

P��x1,x2�,z� � y−5/48 sin1/3��/2�; �11�

and it is straightforward to verify that

P��x1,x2�,z� � y−5/48 cos1/3��/2� . �12�

The identity sin���=2 sin�� /2�cos�� /2�, then immediately
implies

P�x1,x2,z�P�z� � P�x1,x2�P��x1,x2�,z�P��x1,x2�,z� .

�13�

We can evaluate the constant in �13� by taking the limit
x1→x2 �the same procedure used to evaluate C1 in �8��. The
leading term gives

P�x1,x2,z�P�z� = C2P�x1,x2�P��x1,x2�,z�P��x1,x2�,z� ,

�14�

with the universal constant C2 equal to the ratio of the
boundary operator product expansion coefficients C222, given
above, to C112, given below. Specifically, C2=C222/C112, so
that

C2 =
8
2

3

1

��1/3�3 , �15�

with C2=1.36893. . .. Note that although �14� includes corre-
lation functions involving specified intervals, which are per-
haps more complicated than the correlation functions in �8�,
there is no square root.

Next, for completeness, we present two factorized expres-
sions that follow from the above, but have different forms
and certain unusual features. First, one can eliminate
P�x1 ,x2 ,z� between �8� and �14�. This gives

P��x1,x2�,z�P��x1,x2�,z�
P�x1,x2� = C3P�z�
P�x1,z�P�x2,z� ,

�16�

with C3=C112. Thus �see �7��

C3 =
21/231/4
1/2

��1/3�3/2 , �17�

and C3=0.752360738. . .. Finally, multiplying �8� by �16� �or
dividing the square of �8� by �14�� gives

P��x1,x2�,z�P��x1,x2�,z�P�x1,x2,z� = C4P�z�P�x1,z�P�x2,z� ,

�18�

with C4=C1C3, so that

C4 =
24
3

31/2��1/3�6 , �19�

and thus C4=0.7748764775. . .. Equation �18� is “homoge-
neous in averages,” as discussed below.

Figure 2 illustrates �8� and �14� diagrammatically. We
have simulated �8� and �14� �note that �2� includes other
numerical results for �8��. We used site percolation on a
square lattice of size 510�510, at pc=0.5927463,
and 5�106 samples. The boundary sites, chosen as
�x ,y�= �x1=192,1� and �x2=320,1� �i.e. 3 /8 and 5/8
of the way across bottom edge of the square�, defined the
interval �x1 ,x2� �and its complement �x1 ,x2��. We considered
each site z in the entire lattice, and determined which
of the various boundary points and intervals that it
connects with. The fraction of samples in which the two
interval boundary points were connected together was
found to be P�x1 ,x2�=0.0177522. Figure 3 shows
the ratio P�x1 ,x2 ,z� /
P�x1 ,x2�P�x1 ,z�P�x2 ,z�, which
is predicted by �8� to equal C1=C222, and also
the ratio P��x1 ,x2� ,z�P��x1 ,x2� ,z�
P�x1 ,x2� /
P�z�
P�x1 ,z�P�x2 ,z� predicted to be C3=C112 by �16�.
These quantities are shown along the line x=192,
0�y�512, which includes the end-of-interval point �x1 ,1�,
and the vertical center line x=256, 0�y�511. Clearly, the
results are consistent with a constant for both quantities, ex-
cept for deviations a few lattice spacings away from the end
point at �x1 ,1�. Similar finite-size effects about the anchor

FIG. 2. �Color online� Diagrammatic illustrations of �8� and
�14�.
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FIG. 3. �Color online� Numerical results for correlation ratios
predicted to be C1=1.0299. . . �upper two curves� and C3

=0.75236. . . �lower two curves�, for a system of 510�510 sites, for
anchors or endpoints at x1=192, y=1, and x1=320, y=1. In each
pair of curves, the upper �blue online� is along x=256 �the center-
line�, shifted up by 0.1, while the lower �red online� represent the
data for x=192, touching the point x1.
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points were seen for the first ratio for the bond percolation
case in �2�. The data for the first ratio is less smooth than that
for the second, because the former depends upon P�x1 ,x2 ,z�,
which is a rarer event and more subject to fluctuations than
the other quantities.

For the first ratio, we find C1=C222=1.030±0.001, in ex-
cellent agreement with the predicted value C1=1.0299. . .,
and identical to the value found in �2� using bond percolation
on the square lattice. For the second ratio, we find C3
=C112=0.7529±0.001, also in excellent agreement with the
theoretical value C3=0.752360738. . .. These values were de-
termined by averaging the point z over all points on the
lattice.

III. DISCUSSION

Any of our factorization results, namely �8�, �14�, �16�, or
�18�, when written as expectation values of conformal opera-
tors, as mentioned, is necessarily “homogeneous in opera-
tors,” i.e., each distinct operator either appears to the same
power on each side of the equation, or pairs of operators are
replaced by a single operator and the appropriate operator
product expansion coefficient. If this were not so, a universal
expression would not be possible.

Now �8� may be regarded as a generalization of the three-
point function of conformal field theory �9�, in the case when
all three operators are the same. �It reduces to this when the
point z is on the boundary.� The three-point result only re-
quires covariance under the special conformal group, not the
full machinery of conformal field theory. This may indicate
that �8� is more generally valid.

Equation �18� is “homogeneous in averages,” i.e. the
same number of brackets appears on each side. This means
that it may be verified numerically without overall
normalization—one can use the raw data for the number of
samples for each specified probability P without dividing by
the total number of samples.

As remarked in �2�, preliminary calculations and numeri-
cal data show that factorization generalizing �8� holds for
Fortuin-Kastleyn clusters in the critical Potts models as well
�10�.

It is interesting to understand the factorization in terms of
two-dimensional electrostatics. There are several ways to do
this. Defining �x ;z�=1/ �z−x� as the generalized �complex�
potential at z of a unit dipole at x, expresses the potential of
a dipole of strength 	p	 in the direction Arg�p� as p �x ;z�.

Now, establishing our factorization results involves writing
P�x1 ,x2 ,z�, P��x1 ,x2� ,z�, or P��x1 ,x2� ,z� in terms of simpler
correlation functions. The key algebraic step needed is ex-
pressible as

sin2��� � 	�x1;z��x2;z�	2y2�x1 − x2�2 �
	�x1;z��x2;z�	2

	�z; z̄��x1;x2�	2
.

�20�

This may be used, for example, in conjunction with �2�–�7�,
�11�, and �12�, to establish �18�. �These manipulations do not
give an expression for C4, of course.�

Finally, one might wonder why the numerical accuracy of
the conformal prediction is so high, especially at short dis-
tances. In general, the field theory limit of an appropriate
lattice quantity, for instance the order parameter, is given by
a conformal primary field plus correction terms proportional
to its descendant fields. These descendants necessarily have
dimensions larger than that of the primary, and hence give
rise to terms in a given correlation function that die away
more rapidly with distance than those due to the primary, but
which may be substantial at short distances, even for very
large lattices. However, in critical percolation in two dimen-
sions, previous numerical work on closely related quantities
�see �2,11�� has shown that such effects are very small. The
reason for this is, to our knowledge, not known, but it fol-
lows that the accuracy which we observe herein is not sur-
prising.

In conclusion, we have presented several formulas for
higher-order correlation functions applicable to critical per-
colation in two dimensions. These have the property of exact
factorization in terms of lower-order correlations or correla-
tions involving intervals. Our predictions agree with the re-
sults of high-precision simulations.

For the future, it might be possible, using perturbation
theory, to find the corrections to our factorization results for
p�pc. However the calculations required do not appear to be
simple.
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